Find Tungsten Carbide Rod, Tungsten Jewelry , Tungsten Carbide Powder on Industry Directory, Reliable Manufacturer/Supplier/Factory from China.

Inquiry Basket (0)

The Latest Product Alerts Send Me

YL10.2 Tungsten Carbide Rod/Extruded Wolfram Rod

Basic Info

Model No.: ISO K,P,M

Product Description

YL10.2 Tungsten Carbide Rod/Extruded Wolfram Rod

Wolfram Rods Description:

Wolfram Rods applications include drill bits, end mills, and reamers. 

Custom diameters and length are also available in these grades as well as metric sizes.

They are manufactured as standards with one, two, or three holes, straight or twisted 

to a 30 or 40 degree helix, or solid with no holes. All rods are available in standard 

lengths of 310 and 330 mm. Custom lengths available by request.

Wolfram Rods Category:

Polished Carbide Rods
Product Type OD Tolerance of OD ID Tolerance of ID Length Tolerance of L
Sintered Polished Carbide Rods 0.5-50.0mm +/- 0.3mm / / 10-500mm +/- 5.0mm
Finished Tungsten Carbide rods 0.5-50.0mm +0/-0.006mm / / 10-500mm +0.5mm
Tungsten carbide rod for PCB tools / +/- 0.05mm / /   +/- 0.2mm
Tungsten carbide rod with a straight coolant hole 2.0-50.0mm +/- 0.2mm 0.3-10mm +/- 0.1mm 310mm, 330mm +/- 5.0mm
Tungsten carbide rod with two straight coolant holes 4.0-50.0mm +/- 0.5mm 0.3-10.0mm +/- 0.1mm 310mm, 330mm /
Tungsten carbide rod with two helical holes 5.0-50.0mm +/- 0.3mm 0.5-10mm +/- 0.1mm 310mm, 330mm /
Note: Polished Carbide Rods of various diameter, length and hole size combinations can be supplied at customer's request

 Wolfram Rods Display:


Q:What is cemented carbide ?

 A:Cemented carbide is a hard material used in machining tough materials such as carbon steel or

stainless, as well as in situations where other tools would wear away, such as high-quantity

production runs. Most of the time, carbide will leave a better finish on the part, and allow faster

machining. Carbide Tools can also withstand higher temperatures than standard high speed steel tools.


Q:What is the difference between cemented and tungsten carbide? 

A:Cemented carbides consist of hard grains of the carbides of transition metals (Ti, V, Cr, Zr, Mo,

Nb, Hf, Ta, and/or W) cemented or bound together by a softer metallic binder consisting of Co,

Ni, and/or Fe (or alloys of these metals). Tungsten carbide (WC), on the other hand, is a compound

of W and C. Since most of the commercially important cemented carbides are based on WC as

the hard phase, the terms "cemented carbide" and "tungsten carbide" are often used interchangeably. 


Q:What are the key properties of cemented carbides I should be concerned with when

selecting a grade for my application? 

A: The key properties of cemented carbides that define their performance level for different

applications include abrasion resistance (directly related to the hardness of the grade),

fracture strength, and fracture toughness. In general, the abrasion resistance or hardness of any grade

is inversely proportional to its fracture toughness. Very often grade selection involves finding the best

compromise between abrasion resistance and toughness. In some instances strength and corrosion

resistance can be important factors in the grade selection process. 


Q: Which grade characteristics affect the properties of cemented carbide? 

A: The properties of cemented carbides are affected by four primary material characteristics,

namely,( 54490607,i) the average grain size of the carbide phase,( 54490608,ii) the weight or volume percent of the

binder alloy present,( 54490609,iii) the composition of the carbide phases, and (iv) the composition of the

binder alloy. In general, hardness increases (and fracture toughness decreases) as the average hard

phase grain size decreases and/or the weight or volume fraction of the binder decreases.

The strength increases as the average grain size of hard phase decreases at any given binder fraction.

Corrosion resistance increases as Ni and/or Cr is substituted for Co in the binder alloy.


Q: Which properties are important in metal cutting applications? 

A: Depending upon the type of metalcutting operation (turning, Milling, drilling, etc.), different

combinations of properties is needed in order to obtain optimum results. For example, in turning

and drilling applications the cutting tool is in continuous contact with the workpiece. Hence,

for these applications, abrasion resistance and strength are the most important properties to consider.

However, in operations such as milling, which invariably involve interrupted cutting, and hence high

impact forces, toughness can be an important factor. Grades employed for metalcutting applications

are usually based on fine to medium hard phase grain sizes (0.5 to 1.5 mm) and low to medium

Co contents (6 to 15 wt.%).


Q: Are grades used for cutting nonferrous metals different from those used for ferrous metals? 

A: Yes. Grades used for cutting nonferrous metals are usually based on WC as the hard phase and

Co as the binder phase. On the other hand, grades used for cutting ferrous metals usually contain

other hard carbides (e.g., TiC, TaC, NbC, etc.) besides WC. The presence of the TiC, TaC, NbC, etc.

is useful in preventing chemical interactions between the ferrous metals and the cutting tool (which can

lead to cratering on the surface of the tool). In addition, carbides such as TiC, TaC, NbC, etc.

can help increase the hot hardness and strength of cemented carbides. 


Q: Which grades are useful in metal forming applications? 

A: In contrast to metalcutting (where abrasion resistance and strength are of paramount importance),

cemented carbides used in metalforming applications will invariably be subject to high impact and

shock forces. Hence, grades used for metalforming applications must possess high toughness levels

with adequate abrasion resistance and strength. Grades employed for metalforming applications are

typically based on coarse grain sizes (3 to 8 mm) and high binder contents (15 to 30 wt. %). 


Q: Which grades are useful in earth drilling or boring applications? 

A: In many respects the characteristics of the grades employed for earth drilling and boring

represent a compromise between the characteristics that are important for metalcutting and those that

are important for metalforming applications. Grades for earth drilling and boring must possess

the highest toughness levels for any given abrasion resistance level, while simultaneously possessing

adequate strength levels. The best compromise is usually arrived at by using grades that are based on

coarse grain sizes (3 to 8 mm) and relatively low Co levels (6 to 16 wt. %). 


Q:  How can I choose the most suitable products for my applications?

A: 1. Correct installation site depends on specific size and drawings. Especially for dies processing,

drawings can ensure the finished products are qualified.

     2. Processing objects and working environment is determined by cemented carbide grades.

Products' lifetime can be greatly extend if grades are right.


wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod, wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,wolfram rod,

Contact us if you need more details on Wolfram Rod. We are ready to answer your questions on packaging, logistics, certification or any other aspects about Wolfram Rod、Wolfram Rod. If these products fail to match your need, please contact us and we would like to provide relevant information.

Product Categories : Tungsten Carbide > Tungsten Carbide Rod